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Abstract: The enantioselective intermolecular [2 + 2 + 2]
cycloaddition reaction of two molecules of isocyanate and one
molecule of allene is catalyzed by a nickel(0)/(S,S)-i-Pr-FOXAP
complex, providing an efficient access to enantiomerically en-
riched dihydropyrimidine-2,4-diones.

Transition-metal-catalyzed [2 + 2 + 2] cycloaddition reactions
provide a powerful tool for rapid construction of six-membered
ring carbo- and heterocycles. Isocyanates are often employed as
the sr component due to their unique reactivity as well as availability
from commercial sources.? Transition metal complexes such as
cobalt(1),® nickel (0),* ruthenium(11),® and rhodium(1)® can catalyze
the intermolecular [2 + 2 + 2] cycloaddition reaction of one
molecule of isocyanate and two molecules of akyne, leading to
the formation of 2-pyridones.” Pyrimidine-2,4-diones were also
synthesized by [2 + 2 + 2] cycloaddition of two molecules of
isocyanate and one molecule of alkyne.®*® Rovis and co-workers
developed a regio- and enantioselective rhodium(l)-catalyzed bi-
molecular [(2 + 2) + 2] cycloaddition reaction of w-akenyl
isocyanates with alkynes forming bicyclic lactams or vinylogous
amides and applied this strategy to the asymmetric total synthesis
of (+)-lasubine Il and (—)-209D.° Despite numerous studies on
the metal-catalyzed [2 + 2 + 2] cycloaddition reactions, however,
there has been no report on the use of allenes as the coupling partner
of isocyanates.’®** Herein, we describe the nickel-catalyzed
intermolecular [2 + 2 + 2] cycloaddition reaction of 1 equiv of
alene 1 and 2 equiv of isocyanate 2 to afford the corresponding
dihydropyrimidine-2,4-dione 3 with high levels of enantioselectivity
(eq 1).
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Initialy, a variety of achiral phosphine ligands were evaluated
using nickel(0) as the transition metal and undeca-1,2-diene (1a)
and tolyl isocyanate (2a) as the model substrates; a mixture of la
(1.0 equiv) and 2a (3.0 equiv) in THF was heated at 80 °C in the
presence of anickel(0) catalyst generated in situ from Ni(cod), (10
mol %) and a phosphine ligand (P/Ni = 4:1). Whereas the use of
monophosphine ligands such as PMe;, PCys, P(t-Bu)s, and PPh;
resulted in only oligomerization of the allene 1a,*® a cycloaddition
reaction was observed with bisphosphine ligands such as Dppe and
Dppbenz. For example, when Dppe was employed, a mixture of
3aa and 4aa (4:1) was produced in 13% combined yield. The
products 3aa and 4aa are regioisomers, both arising from inter-
molecular [2 + 2 + 2] cycloaddition between one molecule of alene
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Figure 1. Chiral ligands examined in the optimization studies.

Table 1. Ni(0)-Catalyzed Enantioselective [2 + 2 + 2]
Cycloaddition: Screening of Chiral Phosphine Ligands®

i [¢] [e]
Oct _Tol 10 mol % Ni(cod),
N % i N _Tol  Tol _Tol
n/ L 20 mol % ligand ~ Tol NJI\N Tol Tol NJ\N o

| _— +
|'| g THF, 80 °C, 12 h 0)\”)*\% o
1a 2a Oct
(3.0 equiv) 3aa 4aa
entry chiral ligand yield (%)? rs (3:4)° ee (%)°
1 (S9-CHIRAPHOS 78° 5:1 33
2 (S9-NORPHOS 19 4.1 19
3 (S-BINAP 43° 21 5
4 (R)-i-Pr-PHOX 32 16:1 87
5 (S,9)-i-Pr-FOXAP 68 >20:1 97
6 (S9-Ph-FOXAP 66 >20:1 67

aAll reactions were carried out on a 0.2 mmol scale. ® Combined
yield of regioisomers. © Ratio of regioisomers determined by *H NMR.
9 Enantiomeric excess determined by chira HPLC analysis. ©The
product was accompanied with small amounts (~10%) of unidentified
compounds.

la and two molecules of isocyanate 2a. We next extended our
ligand survey to chiral phosphine ligands to observe good catalytic
activity with the use of C,-symmetric bisphosphine ligands such
as (S9-Chiraphos, (S9-Norphos, and (S-Binap (Figure 1).
However, both the regioselectivity (3aa:4aa) and the enantiose-
lectivity of 3aawerelow (Table 1, entries 1—3). The regioselectivity
was significantly improved when unsymmetrical phosphino-oxazo-
line ligands were used (entries 4—6). Among them, (S,9)-i-Pr-
FOXAP*® proved to be the optimal ligand; 3aa was obtained in
68% yield with >20:1 regioselectivity, and its enantioselectivity
was 97% ee (entry 5).*

The results of the reaction with various combinations of
allenes 1 and isocyanates 2 using a nickel(0)/(S,S)-i-Pr-FOXAP
complex are summarized in Table 2. Monosubstituted allenes
1b—d possessing a primary alkyl group readily reacted with 2a
to afford the corresponding products 3ba—da in good yields with
high regio- and enantioselectivities (entries 1—3),® whereas the
reaction of cyclohexylpropa-1,2-diene (1e) was sluggish to give
the product 3ea only in 26% yield (entry 4).*® Functional groups
such as benzyloxy, siloxy, and alkenyl groups were tolerated in
the alkyl chain under the reaction conditions (entries 5—7). The
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Table 2. Ni(0)-Catalyzed Enantioselective [2 + 2 + 2]
Cycloaddition of 1 (RICH=C=CH,) and 2 (R?NCO)?

yield ee
entry 1 (R 2 (R 3 (%) rs(3:4)° (%)
1 1b (Hex) 2a (Tol) 3ba 67 >20:1 96
2 1c (CHCy) 2a 3ca 67 >20:11 94
3 1d ((CHp).Ph) 2a 3da 65 >20:1 94
4 1e(Cy) 2a 3ea 26 51 97°
5  1f ((CH,)4OBn) 2a 3fa 61 >2011 97°
6 1g ((CH.).0TBS) 2a 3ga 60 >20:1 94
7  1h ((CHy).CH=CMe,) 2a 3ha 64 >20:1 99
8 1la(Oct) 2b (4-MeN-CgHs)  3ab 577 >20:1 98
9 1la 2c (4-MeO-CgHs) 3ac 65 >20:11 99
10 1la 2d (Ph) 3ad 70 >20:1 98
11 1la 2e (4-Cl-CgHq) 3ae 73 >20:11 89°
12 1la 2f (4-MeO,C-CgH,) 3af 76 161 97°
13 1la 29 (4-MeCO-CgH,) 3ag 55 >20:1 94°
14 1la 2h (4-CF5-CgHa) 3ah 79 6:1 88°
15 1la 2i (3-Me-CgHa) 3ai 65 >2001 97
16 1la 2j (2-Naphthyl) 33 82 >2011 97
17 1la 2k (Bn) 3ak 12 >20:1 94

#The reaction was carried out with 1 (0.2 mmol), 2 (0.6 mmoal),
Ni(cod), (10 mol %), i-Pr-FOXAP (20 mol %) in THF (1 mL) at 80 °C
for 12 h, unless otherwise noted. ® Combined yield of regioisomers.
¢ Ratio of regioisomers determined by H NMR. ¢ Enantiomeric excess
determined by chiral HPLC analysis. ®Using 1,4-dioxane (1 mL) at 100
°C. "'H NMR yield using CHBr,CHBTr; as an internal standard.

cycloaddition reaction of la with a diverse array of aryl
isocyanates 2b—j proceeded well to give the corresponding
products 3ab—aj in yields ranging from 55 to 82% with
enantioselectivities ranging from 88 to 99% ee (entries 8—16).
Higher regioselectivity was observed with electron-rich aryl
isocyanates than with electron-deficient aryl isocyanates. In the
reaction of benzyl isocyanate (2k) with 1a, large amounts of
isocyanate oligomers were produced together with a small
amount of the cycloadduct 3ak, which was isolated in only 12%
yield (entry 17). Other alkyl isocyanates including hexyl
isocyanate, cyclohexyl isocyanate, and tert-butyl isocyanate all
failed to undergo the cycloaddition reaction.

A plausible mechanism for the production of dihydropyrimidine-
2,4-dione 3 from allene 1 and isocyanate 2 is depicted in Scheme
1.2 Initially, the intermolecular oxidative cyclization of a heteropair
of 1 and 2 occurs on nickel(0) to give five-membered ring
azanickelacyclic intermediate A.*®° Subsequent insertion of
another molecule of 2 into the nickel —nitrogen bond expands A to
seven-membered ring azanickelacycle B, which is in equilibrium
with zwitterionic z-allylnickel species C. Finally, intramolecular
recombination occurs at the more substituted carbon of the allyl
moiety to afford 3 along with nickel(0).

Scheme 1. Proposed Mechanism for Ni(0)-Catalyzed Synthesis of
3 Ni(O)L,,
e

3 from 1 and 2
1+2
2 \<
R2. /\LN’R 2
N - BRI
| \E«N—Rz
) K +R XﬁLn

NiL,
(o] n R2
to
\0 N—¢ % 2
N-R?
,l/N'iLn
R! B
The synthetic utility of the enantiomerically enriched dihydro-
pyrimidine-2,4-dione 3aa was exemplified by further transforma-

tions (eq 2).2° Highly stereoselective functionalization of the olefin
could be achieved.
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In summary, we have developed a highly enantiosel ective nickel-
catalyzed [2 + 2 + 2] cycloaddition of two molecules of isocyanate
and one molecule of allene, providing an efficient access to
enantiomerically enriched dihydropyrimidine-2,4-diones. Further
investigation on the reaction mechanism, the substrate scope, and
the utilization of dihydropyrimidine-2,4-diones as chiral building
blocks are underway.
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