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Abstract: The enantioselective intermolecular [2 + 2 + 2]
cycloaddition reaction of two molecules of isocyanate and one
molecule of allene is catalyzed by a nickel(0)/(S,S)-i-Pr-FOXAP
complex, providing an efficient access to enantiomerically en-
riched dihydropyrimidine-2,4-diones.

Transition-metal-catalyzed [2 + 2 + 2] cycloaddition reactions
provide a powerful tool for rapid construction of six-membered
ring carbo- and heterocycles.1 Isocyanates are often employed as
the π component due to their unique reactivity as well as availability
from commercial sources.2 Transition metal complexes such as
cobalt(I),3 nickel(0),4 ruthenium(II),5 and rhodium(I)6 can catalyze
the intermolecular [2 + 2 + 2] cycloaddition reaction of one
molecule of isocyanate and two molecules of alkyne, leading to
the formation of 2-pyridones.7 Pyrimidine-2,4-diones were also
synthesized by [2 + 2 + 2] cycloaddition of two molecules of
isocyanate and one molecule of alkyne.6a,8 Rovis and co-workers
developed a regio- and enantioselective rhodium(I)-catalyzed bi-
molecular [(2 + 2) + 2] cycloaddition reaction of ω-alkenyl
isocyanates with alkynes forming bicyclic lactams or vinylogous
amides and applied this strategy to the asymmetric total synthesis
of (+)-lasubine II and (-)-209D.9 Despite numerous studies on
the metal-catalyzed [2 + 2 + 2] cycloaddition reactions, however,
there has been no report on the use of allenes as the coupling partner
of isocyanates.10,11 Herein, we describe the nickel-catalyzed
intermolecular [2 + 2 + 2] cycloaddition reaction of 1 equiv of
allene 1 and 2 equiv of isocyanate 2 to afford the corresponding
dihydropyrimidine-2,4-dione 3 with high levels of enantioselectivity
(eq 1).

Initially, a variety of achiral phosphine ligands were evaluated
using nickel(0) as the transition metal and undeca-1,2-diene (1a)
and tolyl isocyanate (2a) as the model substrates; a mixture of 1a
(1.0 equiv) and 2a (3.0 equiv) in THF was heated at 80 °C in the
presence of a nickel(0) catalyst generated in situ from Ni(cod)2 (10
mol %) and a phosphine ligand (P/Ni ) 4:1). Whereas the use of
monophosphine ligands such as PMe3, PCy3, P(t-Bu)3, and PPh3

resulted in only oligomerization of the allene 1a,12 a cycloaddition
reaction was observed with bisphosphine ligands such as Dppe and
Dppbenz. For example, when Dppe was employed, a mixture of
3aa and 4aa (4:1) was produced in 13% combined yield. The
products 3aa and 4aa are regioisomers, both arising from inter-
molecular [2 + 2 + 2] cycloaddition between one molecule of allene

1a and two molecules of isocyanate 2a. We next extended our
ligand survey to chiral phosphine ligands to observe good catalytic
activity with the use of C2-symmetric bisphosphine ligands such
as (S,S)-Chiraphos, (S,S)-Norphos, and (S)-Binap (Figure 1).
However, both the regioselectivity (3aa:4aa) and the enantiose-
lectivity of 3aa were low (Table 1, entries 1-3). The regioselectivity
was significantly improved when unsymmetrical phosphino-oxazo-
line ligands were used (entries 4-6). Among them, (S,S)-i-Pr-
FOXAP13 proved to be the optimal ligand; 3aa was obtained in
68% yield with >20:1 regioselectivity, and its enantioselectivity
was 97% ee (entry 5).14

The results of the reaction with various combinations of
allenes 1 and isocyanates 2 using a nickel(0)/(S,S)-i-Pr-FOXAP
complex are summarized in Table 2. Monosubstituted allenes
1b-d possessing a primary alkyl group readily reacted with 2a
to afford the corresponding products 3ba-da in good yields with
high regio- and enantioselectivities (entries 1-3),15 whereas the
reaction of cyclohexylpropa-1,2-diene (1e) was sluggish to give
the product 3ea only in 26% yield (entry 4).16 Functional groups
such as benzyloxy, siloxy, and alkenyl groups were tolerated in
the alkyl chain under the reaction conditions (entries 5-7). The

Figure 1. Chiral ligands examined in the optimization studies.

Table 1. Ni(0)-Catalyzed Enantioselective [2 + 2 + 2]
Cycloaddition: Screening of Chiral Phosphine Ligandsa

entry chiral ligand yield (%)b rs (3:4)c ee (%)d

1 (S,S)-CHIRAPHOS 78e 5:1 33
2 (S,S)-NORPHOS 19 4:1 19
3 (S)-BINAP 43e 2:1 5
4 (R)-i-Pr-PHOX 32 16:1 87
5 (S,S)-i-Pr-FOXAP 68 >20:1 97
6 (S,S)-Ph-FOXAP 66 >20:1 67

a All reactions were carried out on a 0.2 mmol scale. b Combined
yield of regioisomers. c Ratio of regioisomers determined by 1H NMR.
d Enantiomeric excess determined by chiral HPLC analysis. e The
product was accompanied with small amounts (∼10%) of unidentified
compounds.
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cycloaddition reaction of 1a with a diverse array of aryl
isocyanates 2b-j proceeded well to give the corresponding
products 3ab-aj in yields ranging from 55 to 82% with
enantioselectivities ranging from 88 to 99% ee (entries 8-16).
Higher regioselectivity was observed with electron-rich aryl
isocyanates than with electron-deficient aryl isocyanates. In the
reaction of benzyl isocyanate (2k) with 1a, large amounts of
isocyanate oligomers were produced together with a small
amount of the cycloadduct 3ak, which was isolated in only 12%
yield (entry 17). Other alkyl isocyanates including hexyl
isocyanate, cyclohexyl isocyanate, and tert-butyl isocyanate all
failed to undergo the cycloaddition reaction.

A plausible mechanism for the production of dihydropyrimidine-
2,4-dione 3 from allene 1 and isocyanate 2 is depicted in Scheme
1.17 Initially, the intermolecular oxidative cyclization of a heteropair
of 1 and 2 occurs on nickel(0) to give five-membered ring
azanickelacyclic intermediate A.18,19 Subsequent insertion of
another molecule of 2 into the nickel-nitrogen bond expands A to
seven-membered ring azanickelacycle B, which is in equilibrium
with zwitterionic π-allylnickel species C. Finally, intramolecular
recombination occurs at the more substituted carbon of the allyl
moiety to afford 3 along with nickel(0).

The synthetic utility of the enantiomerically enriched dihydro-
pyrimidine-2,4-dione 3aa was exemplified by further transforma-

tions (eq 2).20 Highly stereoselective functionalization of the olefin
could be achieved.

In summary, we have developed a highly enantioselective nickel-
catalyzed [2 + 2 + 2] cycloaddition of two molecules of isocyanate
and one molecule of allene, providing an efficient access to
enantiomerically enriched dihydropyrimidine-2,4-diones. Further
investigation on the reaction mechanism, the substrate scope, and
the utilization of dihydropyrimidine-2,4-diones as chiral building
blocks are underway.
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