

Published on Web 09/14/2010

Enantioselective [2 + 2 + 2] Cycloaddition Reaction of Isocyanates and Allenes Catalyzed by Nickel

Tomoya Miura, Masao Morimoto, and Masahiro Murakami*

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

Received June 24, 2010; E-mail: murakami@sbchem.kyoto-u.ac.jp

6

(S,S)-Ph-FOXAP

Abstract: The enantioselective intermolecular [2 + 2 + 2] cycloaddition reaction of two molecules of isocyanate and one molecule of allene is catalyzed by a nickel(0)/(*S*,*S*)-*i*-Pr-FOXAP complex, providing an efficient access to enantiomerically enriched dihydropyrimidine-2,4-diones.

Transition-metal-catalyzed [2 + 2 + 2] cycloaddition reactions provide a powerful tool for rapid construction of six-membered ring carbo- and heterocycles.¹ Isocyanates are often employed as the π component due to their unique reactivity as well as availability from commercial sources.² Transition metal complexes such as cobalt(I),³ nickel(0),⁴ ruthenium(II),⁵ and rhodium(I)⁶ can catalyze the intermolecular [2 + 2 + 2] cycloaddition reaction of one molecule of isocyanate and two molecules of alkyne, leading to the formation of 2-pyridones.⁷ Pyrimidine-2,4-diones were also synthesized by [2 + 2 + 2] cycloaddition of two molecules of isocyanate and one molecule of alkyne.^{6a,8} Rovis and co-workers developed a regio- and enantioselective rhodium(I)-catalyzed bimolecular [(2 + 2) + 2] cycloaddition reaction of ω -alkenyl isocyanates with alkynes forming bicyclic lactams or vinylogous amides and applied this strategy to the asymmetric total synthesis of (+)-lasubine II and (-)-209D.9 Despite numerous studies on the metal-catalyzed [2 + 2 + 2] cycloaddition reactions, however, there has been no report on the use of allenes as the coupling partner of isocyanates.^{10,11} Herein, we describe the nickel-catalyzed intermolecular [2 + 2 + 2] cycloaddition reaction of 1 equiv of allene 1 and 2 equiv of isocyanate 2 to afford the corresponding dihydropyrimidine-2,4-dione 3 with high levels of enantioselectivity (eq 1).

Initially, a variety of achiral phosphine ligands were evaluated using nickel(0) as the transition metal and undeca-1,2-diene (**1a**) and tolyl isocyanate (**2a**) as the model substrates; a mixture of **1a** (1.0 equiv) and **2a** (3.0 equiv) in THF was heated at 80 °C in the presence of a nickel(0) catalyst generated *in situ* from Ni(cod)₂ (10 mol %) and a phosphine ligand (P/Ni = 4:1). Whereas the use of monophosphine ligands such as PMe₃, PCy₃, P(*t*-Bu)₃, and PPh₃ resulted in only oligomerization of the allene **1a**,¹² a cycloaddition reaction was observed with bisphosphine ligands such as Dppe and Dppbenz. For example, when Dppe was employed, a mixture of **3aa** and **4aa** (4:1) was produced in 13% combined yield. The products **3aa** and **4aa** are regioisomers, both arising from intermolecular [2 + 2 + 2] cycloaddition between one molecule of allene

Figure 1. Chiral ligands examined in the optimization studies.

Table 1. Ni(0)-Catalyzed Enantioselective [2 + 2 + 2]Cycloaddition: Screening of Chiral Phosphine Ligands^a

^{*a*} All reactions were carried out on a 0.2 mmol scale. ^{*b*} Combined yield of regioisomers. ^{*c*} Ratio of regioisomers determined by ¹H NMR. ^{*d*} Enantiomeric excess determined by chiral HPLC analysis. ^{*e*} The product was accompanied with small amounts (~10%) of unidentified compounds.

66

>20:1

67

1a and two molecules of isocyanate **2a**. We next extended our ligand survey to chiral phosphine ligands to observe good catalytic activity with the use of C_2 -symmetric bisphosphine ligands such as (S,S)-Chiraphos, (S,S)-Norphos, and (S)-Binap (Figure 1). However, both the regioselectivity (**3aa:4aa**) and the enantiose-lectivity of **3aa** were low (Table 1, entries 1–3). The regioselectivity was significantly improved when unsymmetrical phosphino-oxazo-line ligands were used (entries 4–6). Among them, (S,S)-*i*-Pr-FOXAP¹³ proved to be the optimal ligand; **3aa** was obtained in 68% yield with >20:1 regioselectivity, and its enantioselectivity was 97% ee (entry 5).¹⁴

The results of the reaction with various combinations of allenes 1 and isocyanates 2 using a nickel(0)/(S,S)-i-Pr-FOXAP complex are summarized in Table 2. Monosubstituted allenes 1b-d possessing a primary alkyl group readily reacted with 2a to afford the corresponding products **3ba**-da in good yields with high regio- and enantioselectivities (entries 1–3),¹⁵ whereas the reaction of cyclohexylpropa-1,2-diene (1e) was sluggish to give the product **3ea** only in 26% yield (entry 4).¹⁶ Functional groups such as benzyloxy, siloxy, and alkenyl groups were tolerated in the alkyl chain under the reaction conditions (entries 5–7). The

Table 2. Ni(0)-Catalyzed Enantioselective [2 + 2 + 2]Cycloaddition of 1 (R¹CH=C=CH₂) and 2 (R²NCO)^a

entry	1 (R1)	2 (R ²)	3	yield (%) ^b	rs (3:4)°	ее (%) ^d
1	1b (Hex)	2a (Tol)	3ba	67	>20:1	96
2	1c (CH ₂ Cy)	2a	3ca	67	>20:1	94
3	1d ((CH ₂) ₂ Ph)	2a	3da	65	>20:1	94
4	1e (Cy)	2a	3ea	26	5:1	97 ^e
5	1f ((CH ₂) ₄ OBn)	2a	3fa	61	>20:1	97 ^e
6	1g ((CH ₂) ₄ OTBS)	2a	3ga	60	>20:1	94
7	1h ((CH ₂) ₂ CH=CMe ₂)	2a	3ha	64	>20:1	99
8	1a (Oct)	2b $(4-Me_2N-C_6H_4)$	3ab	57 ^f	>20:1	98
9	1a	2c (4-MeO-C ₆ H ₄)	3ac	65	>20:1	99
10	1a	2d (Ph)	3ad	70	>20:1	98
11	1a	$2e (4-Cl-C_6H_4)$	3ae	73	>20:1	89 ^e
12	1a	2f (4-MeO ₂ C-C ₆ H ₄)	3af	76	16:1	97 ^e
13	1a	2g (4-MeCO-C ₆ H ₄)	3ag	55	>20:1	94 ^e
14	1a	2h (4-CF ₃ -C ₆ H ₄)	3ah	79	6:1	88^e
15	1a	2i (3-Me-C ₆ H ₄)	3ai	65	>20:1	97
16	1a	2j (2-Naphthyl)	3aj	82	>20:1	97
17	1a	2k (Bn)	3ak	12	>20:1	94

^{*a*} The reaction was carried out with 1 (0.2 mmol), 2 (0.6 mmol), Ni(cod)₂ (10 mol %), *i*-Pr-FOXAP (20 mol %) in THF (1 mL) at 80 °C for 12 h, unless otherwise noted. ^b Combined yield of regioisomers. ^c Ratio of regioisomers determined by ¹H NMR. ^d Enantiomeric excess determined by chiral HPLC analysis. ^e Using 1,4-dioxane (1 mL) at 100 °C. ^{*f*}¹H NMR yield using CHBr₂CHBr₂ as an internal standard.

cycloaddition reaction of 1a with a diverse array of aryl isocyanates 2b-j proceeded well to give the corresponding products 3ab-aj in yields ranging from 55 to 82% with enantioselectivities ranging from 88 to 99% ee (entries 8-16). Higher regioselectivity was observed with electron-rich aryl isocyanates than with electron-deficient aryl isocyanates. In the reaction of benzyl isocyanate (2k) with 1a, large amounts of isocyanate oligomers were produced together with a small amount of the cycloadduct **3ak**, which was isolated in only 12% yield (entry 17). Other alkyl isocyanates including hexyl isocyanate, cyclohexyl isocyanate, and tert-butyl isocyanate all failed to undergo the cycloaddition reaction.

A plausible mechanism for the production of dihydropyrimidine-2,4-dione 3 from allene 1 and isocyanate 2 is depicted in Scheme 1.¹⁷ Initially, the intermolecular oxidative cyclization of a heteropair of 1 and 2 occurs on nickel(0) to give five-membered ring azanickelacyclic intermediate A.^{18,19} Subsequent insertion of another molecule of 2 into the nickel-nitrogen bond expands A to seven-membered ring azanickelacycle **B**, which is in equilibrium with zwitterionic π -allylnickel species C. Finally, intramolecular recombination occurs at the more substituted carbon of the allyl moiety to afford 3 along with nickel(0).

Scheme 1. Proposed Mechanism for Ni(0)-Catalyzed Synthesis of 3 from 1 and 2

The synthetic utility of the enantiomerically enriched dihydropyrimidine-2,4-dione 3aa was exemplified by further transformations (eq 2).²⁰ Highly stereoselective functionalization of the olefin could be achieved.

In summary, we have developed a highly enantioselective nickelcatalyzed [2 + 2 + 2] cycloaddition of two molecules of isocyanate and one molecule of allene, providing an efficient access to enantiomerically enriched dihydropyrimidine-2,4-diones. Further investigation on the reaction mechanism, the substrate scope, and the utilization of dihydropyrimidine-2,4-diones as chiral building blocks are underway.

Acknowledgment. This work was supported in part by MEXT (Grant-in-Aid for Scientific Research on Innovative Areas, No. 22106520). We thank Prof. Susumu Kitagawa, Dr. Satoshi Horike, and Mr. Tomohiro Fukushima (Kyoto Univ.) for performing an X-ray analysis.

Supporting Information Available: Experimental procedures, spectral data for the new compounds, and details of the X-ray analysis. This material is available free of charge via Internet at http:// pubs.acs.org.

References

- (1) For reviews, see: (a) Varela, J. A.; Saá, C. Chem. Rev. 2003, 103, 3787. (b) Heller, B.; Hapke, M. *Chem. Soc. Rev.* **2007**, *36*, 1085. (c) Chopade, P. R.; Louie, J. *Adv. Synth. Catal.* **2006**, *348*, 2307. (d) Shibata, T.; Tsuchikama, K. *Org. Biomol. Chem.* **2008**, *6*, 1317. (e) Tanaka, K. *Chem.* Asian J. 2009, 4, 508. (f) Galan, B. R.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2830.
- (2) For a review, see: Braunstein, P.; Nobel, D. Chem. Rev. 1989, 89, 1927.
- (3) Hong, P.; Yamazaki, H. Tetrahedron Lett. 1977, 18, 1333.
- (4) (a) Hoberg, H.; Oster, B. W. Synthesis 1982, 324. (b) Takahashi, T.; Tsai,
 F.-Y.; Li, Y.; Wang, H.; Kondo, Y.; Yamanaka, M.; Nakajima, K.; Kotora,
 M. J. Am. Chem. Soc. 2002, 124, 5059. (c) Duong, H. A.; Louie, J. J. Organomet. Chem. 2005, 690, 5098.
- (5) Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Takagishi, H.; Okuda, S.; Nishiyama, H.; Ito, K. J. Am. Chem. Soc. 2005, 127, 605.
 (6) (a) Kondo, T.; Nomura, N.; Ura, Y.; Wada, K.; Mitsudo, T. Tetrahedron Lett. 2006, 47, 7107. (b) Oberg, K. M.; Lee, E. E.; Rovis, T. Tetrahedron 2009, 65, 5056.
- (7) For related [(2 + 2) + 2] cycloaddition of α, ω -diynes with isocyanates, Leo, G. C.; Maryanoff, B. E. J. Am. Chem. Soc. 2005, 127, 3473. (f) Tanaka, K.; Takahashi, Y.; Suda, T.; Hirano, M. Synlett 2008, 1724.

(8) Duong, H. A.; Louie, J. Tetrahedron 2006, 62, 7552

- (a) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2782. (b) Yu, R. T.;
 (a) Yu, R. T.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2782. (b) Yu, R. T.;
 Rovis, T. J. Am. Chem. Soc. 2006, 128, 12370. (c) Yu, R. T.; Lee, E. E.;
 Malik, G.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2379. (d) Perreault,
 S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149, and references therein.
- (10) For recent reviews on transition-metal-catalyzed reactions of allenes, see: (a) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A. *Chem. Rev.* 2000, 100, 3067. (b) Krause, N., Hashmi, A. S. K., Eds. *Modern Allene Chemistry*, Vol. 2; Wiley-VCH: Weinheim, 2004. (c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
- (11) For nickel-catalyzed cycloaddition of one allene and two alkynes, see: (a) (11) For nickel-catalyzed cycloaddition of one aliene and two aikynes, see: (a) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. *Org. Lett.* 2001, *3*, 4233.
 (b) Shanmugasundaram, M.; Wu, M.-S.; Jeganmohan, M.; Huang, C.-W.; Cheng, C.-H. *J. Org. Chem.* 2002, *67*, 7724.
 (12) Pasto, D. J.; Huang, N.-Z.; Eigenbrot, C. W. *J. Am. Chem. Soc.* 1985, *107*,
- 3160.
- (13) Miyake, Y.; Nishibayashi, Y.; Uemura, S. Synlett 2008, 1747.
- (14) When the cycloaddition of entry 5 of Table 1 was carried out on a 1.0 mmol scale, the product was obtained in 62% (>20:1) and 98% ee. A similar result (65% (>20:1) and 97% ee) was obtained when 10 mol % of (S,S)i-Pr-FOXAP and 10 mol % of Ni(cod)2 were used.

COMMUNICATIONS

- (15) The absolute configuration of **3ca** was determined by an X-ray crystal structure analysis of its derivative formed by a conjugate addition of a thiol. See the Supporting Information for details.
- (16) Under our standard conditions, 1-methoxypropa-1,2-diene and 1-(*tert*-butyldimethylsilyl)propa-1,2-diene were not suitable coupling partners.
 (17) Another mechanism involving oxidative cyclization of a homopair of two isocyanates followed by insertion of allene is also conceivable. See: Hoberg, H.; Radine, K.; Milchereit, A. J. Organomet. Chem. 1985, 280, C60.
- (18) Hoberg and co-workers reported their pioneering work on a stoichiometric coupling reaction of allenes with isocyanates on nickel(0), which gave an azanickelacycle corresponding to A. See: (a) Hoberg, H.; Sümmermann,

- K. J. Organomet. Chem. 1984, 275, 239. (b) Hoberg, H.; Hernandez, E.; Sümmermann, K. J. Organomet. Chem. 1985, 295, C21.
 (19) For recent examples of isolated azanickelacycles, see: (a) Ogoshi, S.; Ikeda, H.; Kurosawa, H. Angew. Chem., Int. Ed. 2007, 46, 4930. (b) Yamauchi, K. S. (b) Yamauchi, Chem. 2010. M.; Morimoto, M.; Miura, T.; Murakami, M. J. Am. Chem. Soc. 2010, 132, 54.
- (20) For osmium-catalyzed dihydroxylation of electron-deficient olefins, see: Dupau, P.; Epple, R.; Thomas, A. A.; Fokin, V. V.; Sharpless, K. B. Adv. Synth. Catal. 2002, 344, 421.

JA105541R